--- title: "MinSNPs Workflow" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{MinSNPs Workflow} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ```{r setup} library(minSNPs) library(BiocParallel) # optional, but needed for parallel processing ``` ## Reading & processing input for further analysis `read_fasta` is provided as a way to read fasta file, equivalent function, e.g., from `Biostrings` and `read.fasta` from `seqinr` can be used. ```{r} isolates_from_default <- read_fasta( system.file("extdata", "Chlamydia_mapped.fasta", package = "minSNPs")) processed_from_default <- process_allele(isolates_from_default) ``` Subsequent analyses can use output from `process_allele`. ## Identifying SNPs with high Simpson's index ```{r} high_d_snps <- find_optimised_snps(seqc = processed_from_default, metric = "simpson", number_of_result = 1, max_depth = 1, included_positions = c(), excluded_positions = c()) ``` ## Identifying SNPs discriminating a group of interest ```{r} discriminating_snps <- find_optimised_snps(seqc = processed_from_default, metric = "percent", number_of_result = 1, max_depth = 1, included_positions = c(), excluded_positions = c(), goi = c("A_D213", "H_S1432")) ``` ## Displaying/saving result ```{r} cat("High D SNPs\n") output_result(high_d_snps) cat("SNPws discriminating against A_D213, H_S1432\n") output_result(discriminating_snps) ``` ```{r, eval=FALSE} output_result(high_d_snps, view = "csv", file_name = "high_d_snps.csv") output_result(discriminating_snps, view = "csv", file_name = "discriminating_snps.csv") ```